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C-phycocyanin from the cyanobacterium, M astigocladus laminosus, and its subunits have been  
treated with p-chloromercuribenzenesulfonate (PCMS). A  single reactive site was found on the ß- 
subunit, and assigned to the single free cystein-ßl09. The concomitant spectral changes (absorp­
tion, fluorescence, circular dichroism), together with the known close proximity o f cys-ßl09 to 
chromophore ß82, allowed an unambiguous assignment o f the three spectrally, biochemically and 
functionally different chromophores to specific binding sites on the two peptide chains (a84:
6 1 6 -6 1 8 , ß82: 6 2 2 -6 2 4 , ß 153: 5 9 8 -6 0 0  nm).

Introduction

C-phycocyanins (PC), the light-harvesting pig­
ments from cyanobacteria, are composed of two sub­
units (a , ß) bearing one and two open-chain tetrapyr- 
rolic chromophores, respectively [1—5]. In spite of 
their common structures [1, 2, 6 , 7], the three 
chromophores differ in their spectroscopic properties 
[8—10] and their reactivities [10—12], These differ­
ences, which arise from the different environments 
of the individual chromophores in the native 
chromoprotein, are essential for the fine tuning of 
their biological functions [1 -5 , 8 , 10, 13].

The individual environments and conformations of 
the three chromophores, have recently been mapped 
in detail by sequenation [14—19] and X-ray crystal­
lography [20, 21], The data indicate a considerable 
degree of homology around the respective chromo­
phores in PC’s from different organisms. The single 
chromophore on the a-subunit is attached to Cys-84, 
and the chromophores on the ß-subunit to Cys-82 
and Cys-153. The two PC’s studied by high-resolu- 
tion X-ray crystallography [20, 21] (from M astigoc­
ladus laminosus and Agmenellum quadruplicatum ) , 
have furthermore almost identical chromophore and 
protein conformations and differ only in their aggre­
gation state.

A correlation between the spectrally and structur­
ally distinct chromophores has hitherto been lacking, 
but is very important in view of the recent progress in 
energy transfer studies (see e.g. [13]). Based on the
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observation of a single binding site (cys-ßl09) for 
mercurials [20, 21], we have now titrated PC and its 
subunits from M. laminosus with the thiol reagent, 
PCMS, which led to the unambiguous assignment of 
the chromophores. This situation is more clear-cut 
than in other biliproteins, e.g. phycoerythrin [2 2 ] 
containing more than a single free cystein available 
for reaction with mercurials [1—5].

Materials and Methods

M. laminosus was grown in Castenholz medium
[23] in 300 1 batch cultures [24] and provided to us 
and stored deep frozen. PC and the subunits were 
prepared as described previously [6 ]. p-Chloro-mer- 
curi-benzenesulfonic acid (PCMS, Aldrich) was a gift 
of T. Schirmer, all other chemicals came from Merck 
(Darm stadt).

Absorption spectra were recorded on a model 
8451A spectrophotom eter (Hewlett-Packard), fluo­
rescence spectra on a model DM R22 fluorimeter 
(Zeiss, Oberkochen) and circular dichroism spectra 
on a model V dichrograph (Jobin-Yvon, U nter­
haching).

Titrations were carried out by adding aliquots of a 
stock solution of PCMS (2.26 mM, in potasium phos­
phate buffer, 100 m M , pH 7.0) to the chromoprotein 
solutions (1 -3  îm in the same buffer). The following 
extinction coefficients were used for the concentra­
tion determinations: PC trimer = 870,000 c m 2M-1 

corresponding to 290,000 per protomer (aß)j and
97,000 per chrom ophore); ß-subunit = 164,000 cor­
responding to 82,000 per chromophore; a-sub­
unit = 122,000. They were determined by unfolding
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th e  p r o te in s  w ith  8 m u r e a , o n  th e  b a s is  o f  an  e x t in c ­
t io n  c o e f f ic ie n t  o f  15,400 p e r  c h r o m o p h o r e  in  th e  

d e n a tu r e d  s ta te  [1 1 ].

Results

Integral PC

Treatment of PC trimer with a threefold molar 
excess of PCMS (on a monomer basis for the pro­
tein) results in a partial bleaching of the major ab­
sorption (612 nm) (Fig. la ) . It is accompanied by a

minor blue-shift and the formation of a longer- 
wavelength shoulder. The integrated negative band 
(612 nm) in the difference spectrum, is about twice 
as large as the concomitant increase (655 nm). There 
is also a distinct increase in the near-uv band. T itra­
tion of PC gives a saturation of the reaction at 1 mol 
PCMS per mole PC (Fig. 2a). The same general fea­
tures are observed in PC trimer containing linker 
peptides (Xmax = 629 nm), but here the negative peak 
in the difference spectrum is located at 632 nm (data 
not shown).
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Fig. 1. Treatment of integral 
PC-trimer (A ), its ß-subunit 
(B) and its a-subunit (C) with 
PCMS. Absorption (left 
scales) and absorption differ­
ence spectra (right scales). 
1A: PC (4.8 nmol, spectrum 
a) treated with 13.6 nmol 
PCMS. Difference spectra re­
corded after 30 (c), 60 (d) 
and 100 min (e), final absorp­
tion spectrum (b) 180 min 
after addition. IB: Absorp­
tion spectrum (a) of the ß- 
subunit (5.66 nmol) and final 
difference spectrum (b) after 
addition of PCMS (9.06 nmol, 
r = 1 8 m in ). 1C: Absorption  
spectrum (a) of the a-subunit 
(6.9 nmol) and final differ­
ence spectrum (b) after addi­
tion of PCMS (9.1 nmol, 
t=  10 min).

2 A

PCMS / Pigment

PCMS / Pigment

2B

Fig. 2. Titration of integral 
PC and its ß-subunit with 
PCMS. 2 A: Amplitude o f the 
absorption difference signal 
(maximum-to-minimum).
The absorptions before addi­
tion of the reagent were 0.68
(— ), 0.62 (------ ) and 0.66
(•••). Labels see inset. 2B: 
Relative fluorescence em is­
sion intensities ( I F, left scale) 
and maxima (Xmax in nm. 
right scale). Labels see inset.
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The fluorescence of PC trimer is reduced to a 
minimum of 35% of the original value and saturates 
at ~  . 8  mol PCMS, its wavelength is shifted by 10 nm 
to the red (Fig. 2b). In the CD spectrum, the most 
notable feature is the development of a shoulder on 
the red-wing of the long-wavelength band at 650 nm 
(data not shown, similar to the ß-subunit shown in 
Fig. 3).

Subunits

The spectral changes of the ß-subunit are very 
similar to the ones observed in trimeric PC. The ab­
sorption difference is again centered to the red of the 
absorption band. The amplitude of the difference 
spectrum (minimum to maximum) is even larger than 
PC in integral (Fig. lb ) , and the reaction saturates 
at ==.65 mol PCMS (Fig. 2). The fluorescence de­
creases by 45%, and the amplitude of the red CD 
maximum by 7% with a concomitant rise of a shoul­
der around 650 nm and an increase of the near-uv 
band by 17% (Fig. 3).

The a-subunit is essentially unreactive with 
PCMS (Fig. 1 c). There is only a minor feature in the 
difference spectrum with an intensity of 6 % as com­
pared to the ß-subunit, which probably corresponds 
to a minor contamination with the latter (—5% ac­
cording to SDS-PAGE). The changes in the fluores­
cence and the CD spectra are negligible as well (data 
not shown).

Discussion

Besides the three cystein residues bound to the 
chromophores, PC contains only a single free cystein 
at position 109 on the ß-chain. In the native 
chromoprotein, this cystein is very close (~ 4 A ) to 
the ß82 chromophore, with an essentially protein- 
free hole between them, which is the single binding 
site for mercurials used for heavy-atom substitution 
[20, 21]. The distances to the other chromophores 
( a 84, ß 153) both on the same monomer and on the 
other monomers in the trimer are considerably larger 
(> 22A ). It is, therefore, expected that the ß82 
chromophore is affected rather specifically upon 
binding of mercurials. A differential response of in­
dividual chromophores has earlier been reported for 
phycoerythrin [2 2 ], but could not be explored further 
due to lack of structural data at that time.

The saturation behavior in solution confirms the 
binding of only a single molecule of PCMS both in 
the PC protomer and its ß-subunit. This is further 
corroborated by the lack of reaction with the a-sub­
unit bearing no free cystein. All spectra can be 
rationalized by a single chromophore absorbing 
around 620 nm in the ß-subunit and the trimer, and 
around 630 nm in the linker-containing trimer, re­
spectively, being affected by the reaction of the free 
cys-109 with PCMS. Two spectrally [10, 13], chemi­
cally [1 0 , 1 1 ] and photochemically [1 2 ] distinct 
chromophores have been identified on the ß-subunit
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of PC from M. laminosus. One of them (ß l)  absorbs 
around 620 nm, is only weakly optically active and 
strongly fluorescent (in the absence of any accep­
tors), and the reversible photochemistry observed in 
partly denatured PC or its ß-subunit resides on it. 
The other one (ß2) absorbs below 600 nm, is strongly 
optically active and weakly fluorescent due to effi­
cient energy transfer to ß 1 and (in integral PC) to the 
a-chrom ophore(s), and is photochemically inactive. 
It is clear from the data, that the former Chromo­
phore (ß 1) is the one close to the PCMS binding site 
and hence identical with ß82, whereas the latter (ß 2 ) 
is identical with chromophore ß 153. If judged from 
the absorption changes (increase in the near-uv, de­
crease in the visible band), the ß82 chromophore 
assumes a more helical conformation [1 1 ] after 
PCMS binding.

This assignment relates the photochemical reactiv­
ity to the chromophore, ß82, which is least well de­
fined in the X-ray structure [20, 21] and hence prob­
ably also least rigidly bound. The data obtained with 
the linker-containing trimer (?tmax = 629 nm) also in­
dicate, that the ß82 chromophore is the one shifted 
towards longer wavelengths (from —622 to
— 632 nm). These linkers, which are substantial in 
the spectral modulation and organisation of bilipro- 
tein aggregates, are most likely located in the inner
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